46 research outputs found

    Reducing spectral attenuation in small-core photonic crystal fibers

    Get PDF

    Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    Get PDF

    Photonic bandgap fiber with multiple hollow cores

    Get PDF

    Photonic Microresonators Created by Slow Optical Cooking

    Get PDF
    Silica and water are known as exceptionally inert chemical materials whose interaction is not completely understood. Here we show that the effect of this interaction can be significantly enhanced by optical whispering gallery modes (WGMs) propagating in a silica microcapillary filled with water. Our experiments demonstrate that WGMs, which evanescently heat liquid water over several hours, induce permanent alterations in silica material characterized by the subnanometer variation of the WGM spectrum. We use the discovered effect to fabricate optical WGM microresonators having potential applications in optical signal processing and microfluidic sensing. Our results pave the way for the ultraprecise fabrication of resonant optical microdevices and the ultra-accurate characterization of physical and chemical processes at solid-liquid interfaces

    Tunable SNAP Microresonators via Internal Ohmic Heating

    Get PDF
    We demonstrate a thermally tunable Surface Nanoscale Axial Photonics (SNAP) platform. Stable tuning is achieved by heating a SNAP structure fabricated on the surface of a silica capillary with a metal wire positioned inside. Heating a SNAP microresonator with a uniform wire introduces uniform variation of its effective radius which results in constant shift of its resonance wavelengths. Heating with a nonuniform wire allows local nanoscale variation of the capillary effective radius, which enables differential tuning of the spectrum of SNAP structures as well as creation of temporary SNAP microresonators that exist only when current is applied. As an example, we fabricate two bottle microresonators coupled to each other and demonstrate differential tuning of their resonance wavelengths into and out of degeneracy with precision better than 0.2 pm. The developed approach is beneficial for ultraprecise fabrication of tunable ultralow loss parity-time symmetric, optomechanical, and cavity QED devices
    corecore